Mechanistic-Empirical Pavement Design Workshop

State Perspective

Linda M. Pierce, PE
State Pavement Engineer
Washington State Department of Transportation

87th Annual Meeting
January 13-17, 2008
Presentation Outline

- Washington State details
- WSDOT previous design procedure
- ME Design
 - Reasons for developing
 - Challenges
 - Implementation efforts
 - Benefits
- Thoughts on implementation
Washington State Details

- Pavement network
 - Chip Seal: 4,365 ln-mi (23.7 percent)
 - HMA: 11,624 ln-mi (63.3 percent)
 - PCC: 2,384 ln-mi (13.0 percent)
 - Total: 18,373 ln-mi

- Climate
 - Western Washington: primarily wet non-freeze
 - Eastern Washington: dry freeze

- Traffic
 - Primarily heavily populated in western Washington
 - Primarily farming communities in eastern Washington
WSDOT Previous Design Procedure

- Gravel equivalency process
- Based on work conducted by Hveem and Carmany and modified by WSDOT to better match actual pavement performance
- Subgrade characterization
 - Originally based on CBR
 - Problems with some clean sands and clayey gravels along the Washington coast, a switch was made to R-value (modifications – primarily confining pressure).
WSDOT Gravel Equivalency Design Chart

- Traffic Index
 - Used by WSDOT from 1956-1991
 - Process for converting mixed truck repetitions to 5,000 lb equivalent loads

- Relationship between gravel equivalent and HMA, ATB and CTB were developed
 - Empirically based from test track data and Washington State in-service pavements
AASHTO Design of Pavement Structures

- WSDOT fully adopted in 1995
 - Primarily for new construction
- Developed WSDOT specific input values
 - Design catalogs
 - Project specific design
Reasons for Moving to ME Design

- Accommodate changing load types
- Better utilization of available materials
- Accommodate new materials
- Improved reliability of performance predication
- Better definition of the role of construction
- Material properties which relate better to actual pavement behavior and performance
- Improved definition of existing pavement layer properties
- Accommodation of environmental and aging effects on materials
WSDOT Motivation for Moving to ME (HMA overlay thickness design)

- Increasing emphasis
 - Maintenance
 - Rehabilitation
- Need for a more rational and cost effective HMA overlay design procedure
- Multilayered elastic analysis was determined to provide reasonable and effective solutions
WSDOT HMA ME Overlay Design

- **Everpave**
 - Developed by University of Washington and WSDOT
 - Requires the use of
 - Layer moduli (backcalculated from FWD testing and adjusted for seasonal effects)
 - Calculation of strains
 - Necessary to preclude
 - Fatigue and rutting failures
 - HMA layer moduli are corrected for temperature typical for WSDOT mixtures
 - Iterative process to determine overlay thickness
Everpave (continued…)

- Unstabilized base course and subgrade characterized

\[E = K_1(\theta)^{K_2} \quad \text{or} \quad E = K_3(\theta)^{K_4} \]

- Failure criteria (Chevron’s method)

 - Rutting (subgrade)
 \[N_f = 1.077 \times 10^{18} \left(\frac{1}{\varepsilon_v} \right)^{4.4843} \]

 - Fatigue (Finn, Monismith, Newcomb)
 \[N_f = (N_{lab})(SF) \]
 \[SF = 10^{14.82 - 3.291 \log \left(\frac{\varepsilon_t}{10^{-6}} \right) - 0.854 \log \left(\frac{E_{AC}}{10^3} \right)} \]
Efforts for Implementing ME Design

- Need to characterize (most significant factors)
 - Materials (includes seasonal variation)
 - Truck classification and volumes
 - Failure criteria (rutting and fatigue cracking)

- Field testing and evaluation
 - Coring
 - Trenching
 - FWD testing
 - Pavement performance
Efforts for Implementing ME Design

- Need to train personnel
 - Layered elastic theory
 - Material testing
 - FWD testing and analysis
 - Seasonal changes and impacts on materials
 - Characterization of traffic
Thoughts on Implementation

- This may take time…
 - WSDOT ME development to implementation took 8 – 10 years (at least three PhD’s and several Master’s studies)

- ME overlay designs
 - 1980’s
 - Evaluated 600-800 lane miles per year
 - Today
 - Evaluate less than 100 lane miles per year
 - Mill and fill is standard treatment
 - Pavement management practice
 - Effective rehabilitation treatment
Thoughts on Implementation

- Determine necessary level of effort
 - What is the level of material variation (or any other variable)?
 - Subgrade (can be huge in any given state, but can this be segmented by area)
 - Base layers (treated or untreated)
 - HMA or PCC
 - What is the impact of variation on thickness design?
 - Is this significant to require the need for extensive testing or could a material catalog be developed for the majority of work?
Questions