TRB MEPDG Workshop

Traffic & Axle Weight Data

Brian Diefenderfer, PhD, PE
Research Scientist
Virginia Transportation Research Council
Charlottesville, VA

January 13, 2008
Presentation Outline

• WIM program (prior to MEPDG)
• WIM program & MEPDG implementation
 – sensors and locations
• Data quality
• Utilizing WIM data
 – MEPDG & AASHTO ‘93
• Future efforts
VDOTs Early Traffic Data & WIM Program

• 1980s to early 1990s
 – prescreening trucks at pull-off scales
 – development of ESAL factors

• 1990s
 – piezoelectric sensors (LTPP sites)
 – 17 WIM sites around Virginia
 – primarily volume & classification data
 – data drifted over time and with temperature
Traffic Data & WIM Program in 2000

- **Existing count stations**
 - 270 continuous
 - all with classification
 - approximately 17,000 short-term
 - 6,100 w/ classification

- **6 existing WIM sites**
 - DMV monitored
 - associated with truck pull-off scales
WIM data - Initial MEPDG Implementation

- MEPDG implementation committees
 - established by VDOT in 2000
- Traffic data committee
 - focused on VDOTs WIM program
 - evaluate existing data sources
 - determine additional needs
WIM data - Initial MEPDG Implementation

• VTRC study, 2003
 – Traffic Data Plan for M-E Pavement Designs
 • B. Cottrell, T. Schinkel, T. Clark
 • http://vtrc.virginiadot.org (click on “Reports”)

• WIM sites
 – based on TT truck volumes (TMG)
 • > 1,000 per day
 • < 1,000 per day
 • < 100 per day (optional)
WIM data - Initial MEPDG Implementation

- Site selection guidelines
 - smoothness is the key
- Sensors
 - piezoelectric (older type)
 - did not consistently meet ASTM standards
 - bending plates
 - reliable, but safety concerns
 - load cells
 - reliable and safe, but expensive
WIM data - Current MEPDG Implementation

• 16 sites monitored by VDOT & 6 by DMV
 – 10 with TT truck count > 1,000 per day
 – 12 with TT truck count < 1,000 per day
• Equipment
 – primarily Kistler quartz piezoelectric sensors
 • reliable, least expensive alternative, 5yr± life
 – bending plates at LTPP site
 – DMV sites are load cells
Load Cell Sensors
Quartz Piezoelectric Sensors
Choosing New WIM Sites

• Quartz piezoelectric sensors
 – approx. $30,000 per lane
• New asphalt overlays (HMA and SMA)
 – IRI < 40-45 in/mi
 – sites evaluated using LTPP software
• Construct a location (not preferred = $$$)
 – VDOT has built concrete and asphalt pads
 – both ground to achieve desired smoothness
Data Quality

• Calibrated using known axle loads
 – continuously checked for drift
 – minor rutting found to affect data
 • corrected by grinding
 – adjustment about every 6 months

• Goal
 – ASTM Type I
WIM data uses in M-E Design

• Load spectra
 – statewide vs. regional
 – vehicle classification specific
 – administrative classification specific
 – modeling by statistical distributions / equations

• Truck weight policy decisions
 – effects (costs) of increased weight limits
Axle Load Spectra

Class 9 - Interstate

- Steering
- Single
- Tandem

frequency of occurrence

axle weight, kips
WIM Data Uses in AASHTO ’93 Design

• ESAL factor
 – vehicle classification specific
 – administrative classification specific
 – depends on knowledge (or estimate) of SN
 – current VDOT values (flexible) = 0.37 & 1.28
 – revised primary = 0.63 & 1.03
 • SN = 4.75, \(p_t = 2.85 \)
 – revised interstate = 0.37 & 1.05
 • SN = 6.0, \(p_t = 3.0 \)
Future Efforts

• Equipment
 – maintain & evaluate existing WIM sites
 – replace sites when needed
 – add new sites when advantageous

• Data
 – revised ESAL factors for ‘93 AASHTO design (flexible & rigid)
 – default load spectra for MEPDG
VDOT MEPDG Traffic Team

- Materials Division
 - Trenton Clark, chair
 - Mohamed Elfino

- Research Council
 - Ben Cottrell
 - Brian Diefenderfer

- Traffic Engineering Division
 - Tom Schinkel
 - Hamlin Williams
 - Richard Bush

- Richmond District
 - William Hughes