Geometric Design Guide for Transit Facilities on Highways and Streets – Phase I

Interim Guide

Requested by:

American Association of State Highway and Transportation Officials (AASHTO)

Standing Committee on the Highways

Prepared by:

Chuck Fuhs
Parsons Brinckerhoff
Houston, Texas

July 2002

The information in this report was prepared as part of NCHRP Project 20-7, Task 135, National Cooperative Highway Research Program, Transportation Research Board.
Acknowledgments

This study was requested by the American Association of State Highway and Transportation Officials (AASHTO), and conducted as part of National Cooperative Highway Research Program (NCHRP) Project 20-7, Task 135. The NCHRP is supported by annual voluntary contributions from the state Departments of Transportation. NCHRP Project 20-7 is intended to fund quick response studies on behalf of the AASHTO Standing Committee on Highways.

This Interim Guide was prepared by Parsons Brinckerhoff. Chuck Fuhs was the Principal Investigator for the project. Rob Fellows and David Shelton of Parsons Brinckerhoff, and Steve Schijns of McCormick Rankin International, Ltd. were principal contributors. The work was reviewed and guided by an advisory group whose names are listed in the report: Members of this advisory group provided valuable information and reviewed this Interim Guide. The project was managed by Harvey Berlin, NCHRP Senior Program Officer.

Disclaimer

The opinions and conclusions expressed or implied are those of the research agency that performed the research and are not necessarily those of the Transportation Research Board or its sponsors. This report has not been reviewed or accepted by the Transportation Research Board's Executive Committee or the Governing Board of the National Research Council.
Geometric Design Guide for Transit Facilities on Highways and Streets – Phase I

Interim Guide

Requested by:
American Association of State Highway and Transportation Officials (AASHTO)
Standing Committee on the Highways

Prepared by:
Rob Fellows and Chuck Fuhs
Parsons Brinckerhoff
Houston, Texas

July 2002

The information in this report was prepared as part of NCHRP Project 20-7, Task 135, National Cooperative Highway Research Program, Transportation Research Board.
Advisory Group for Project 20-7/ Task 135

Geometric Design Guide for Transit Facilities on Highways and Streets – Phase I

Interim Guide

Howard P. Benn, Montgomery County Transit, Maryland
Carla L Cefaratti, Ohio Department of Transportation
Philip J. Clark, New York State Department of Transportation
Edward R. Coven, Florida Department of Transportation
Elizabeth Hilton, P.E., Texas Department of Transportation
Jim McDonnell, AASHTO
Sam Carnaggio, Federal Transit Administration Liaison
Robert C. Schlicht, P.E., Federal Highway Administration Liaison
Table of Contents

1. **Introduction** ... 1-1
 1.1. **Purpose and Scope** ... 1-1
 1.1.1. Audience .. 1-1
 1.1.2. Organization of the Interim Guide 1-2
 1.2. **AASHTO Green Book and Related AASHTO References** 1-2
 1.2.1. Relationship to Other AASHTO References 1-2

2. **General Guidelines Common To All Transit Facilities** 2-1
 2.1. **Functional Planning** ... 2-1
 2.1.1. Regional-Scale Transit/HOV Facilities Planning 2-1
 2.1.2. Planning HOV Facilities at the Corridor Level 2-3
 2.1.3. Facility-Based Planning 2-4
 2.1.4. Sketch Planning Techniques 2-5
 2.1.5. Transit Demand Estimation Techniques 2-7
 2.1.6. General Design and Cost Factors 2-8
 2.1.7. Cost Effectiveness Analysis 2-8
 2.2. **Bus Transit Capacity** ... 2-8
 2.2.1. Introduction .. 2-8
 2.2.2. Vehicular Capacity of Bus Stops and Loading Areas 2-10
 2.2.3. Vehicular Capacity of Bus Lanes 2-22
 2.2.4. Person Capacity of Bus Facilities 2-26
 2.3. **Design Controls and Criteria** 2-32
 2.3.1. Design Vehicle ... 2-32
 2.3.2. Design Driver .. 2-36
 2.3.3. Design Speed .. 2-36
 2.3.4. Roadway Alignment Geometry 2-37
 2.4. **References** .. 2-38

3. **Design Guidelines for Transit Facilities on Highways** ... 3-1
 3.1. **General Planning and Design Considerations** 3-1
 3.1.1. Types of Highway Transit Services and Facilities 3-1
 3.2. **Transit Vehicle Facilities** 3-3
 3.2.1. Lane Treatment Cross Sections and Design Considerations 3-3
 3.2.2. Termination and Access 3-18
 3.2.3. Enforcement Provisions 3-27
 3.2.4. Transit Specific Signing and Pavement Markings 3-34
 3.3. **Highway Transit Passenger Facilities** 3-38
 3.3.1. General Site Considerations 3-39
 3.3.2. On-Line Transit Station 3-46
 3.3.3. Off-Line Bus Stops 3-58
 3.4. **References** .. 3-65
4. **Design Guidelines for Transit Facilities on Streets** 4-1

4.1. **General Planning And Design Considerations** 4-1
 4.1.1. Types Of On-Street Transit Services and Facilities 4-2
 4.1.2. Planning And Design Process ... 4-2
 4.1.3. Need and Justification for Bus Priority Treatment 4-6
 4.1.4. Selecting Type of Application ... 4-7
 4.1.5. Bus Stop Design Basics .. 4-9

4.2. **Bus Operations in Shared Lanes (Mixed Traffic)** 4-12
 4.2.1. Accommodations For Shared Lane Use 4-12
 4.2.2. Bus Operations at Intersections 4-14

4.3. **Bus Lane Design** ... 4-20
 4.3.1. Bus Use Of Shoulders .. 4-20
 4.3.2. Right (Curb) Lane ... 4-21
 4.3.3. Inner Lane ... 4-24
 4.3.4. Left (Median) Lane ... 4-26
 4.3.5. Right Side or Left Side Contraflow (One Way Street) 4-28
 4.3.6. Median Contraflow (Two Way Street) 4-30
 4.3.7. Spot Treatments for Bus Priority 4-31

4.4. **Infrastructure and Practices Related to On-Street Bus Operation** 4-32
 4.4.1. Provisions for Bus Lane Enforcement 4-32
 4.4.2. Signing and Pavement Marking 4-33
 4.4.3. Infrastructure Design for Intelligent Transportation Systems 4-39

4.5. **References** ... 4-43

5. **Off-Line Transit Facilities** ... 5-1

5.1. **Planning and Design Considerations** 5-1
 5.1.1. Types of Off-Line Transit Services and Facilities 5-1
 5.1.2. Justification and Need for Off-Line Transit Treatments 5-2
 5.1.3. Demand Estimation ... 5-2
 5.1.4. Planning and Design Process ... 5-2
 5.1.5. Final (Detail) Design and Construction 5-4

5.2. **Bus – Passenger Interface Elements** 5-4
 5.2.1. Bus Circulation & Passenger Loading Areas 5-4
 5.2.2. Public Areas .. 5-15
 5.2.3. Operational Support Areas .. 5-19
 5.2.4. Security Considerations .. 5-26

5.3. **Parking & Access Elements** .. 5-32
 5.3.1. Separation of Modes ... 5-32
 5.3.2. Pedestrian and Bicycle Accommodations 5-32
 5.3.3. Bus Access Requirements .. 5-38
 5.3.4. Private Automobile Parking .. 5-40

5.4. **Community Integration** .. 5-46
 5.4.1. Integrating Transit Facilities with Adjacent Land Uses 5-46
 5.4.2. Aesthetic Considerations ... 5-50

5.5. **References** ... 5-51
Appendix A: Glossary of Terms ...A-1
Appendix B: List of References ..B-1
Appendix C: Inventory of Current ProjectsC-1
List of Figures

Figure 2-1 Bus Vehicle Capacity Factors .. 2-9
Figure 2-2 On-Line and Off-Line Loading Areas.. 2-10
Figure 2-3 Bus Stop Maximum Vehicle Capacity Related to Dwell Times and Number of Loading Areas... 2-21
Figure 2-4 Exclusive Bus-Lane Vehicle Capacity: Non-Skip-Stop Operation.... 2-26
Figure 2-5 Mixed-Traffic-Lane Bus Vehicle Capacity 2-27
Figure 2-6 Person Capacity Factors ... 2-28
Figure 2-7 Person Capacity Calculation Process ... 2-29
Figure 2-8 Typical Busway Line-Haul Passenger Volumes.............................. 2-31
Figure 2-9 Turn Template: 40-ft Intercity Bus .. 2-32
Figure 2-10 Turn Template: 45-ft Intercity Bus ... 2-33
Figure 2-11 Turn Template: City Transit Bus .. 2-34
Figure 2-12 Turn Template: Articulated Bus ... 2-35

Figure 3-1 Examples of Cross Section for Busway or HOV Facility in Separate Rights-of-Way .. 3-3
Figure 3-2 Busway Located Between a Freeway and a Parallel Frontage Road.... 3-6
Figure 3-3 Examples of Cross Sections for Exclusive Two-Directional HOV Facilities ... 3-7
Figure 3-4 Barrier Separated Bus/HOV Lanes – Reversible (one lane)............ 3-9
Figure 3-5 Barrier Separated Bus/HOV Lanes – Reversible (two lane) 3-10
Figure 3-6 Concurrent Flow HOV – Buffer Separated 3-12
Figure 3-7 Concurrent Flow HOV – Non-Separated (Right Side) 3-13
Figure 3-8 Contraflow Lane .. 3-16
Figure 3-9 Examples of Layouts for HOV Lane Entry Points 3-19
Figure 3-10 Examples of Layouts for HOV Lane Exit Points 3-20
Figure 3-11 Examples of Layouts for Slip Ramps ... 3-21
Figure 3-12 Illustration and Example Layout for an HOV Drop Ramp 3-23
Figure 3-13 Example of Layout for Low Volume Busway T-Ramp or Intersection 3-24
Figure 3-14 Example of Layout for HOV Y-Ramp .. 3-25
Figure 3-15 Example of HOV Flyover Ramp .. 3-26
Figure 3-16 Example of Layout for HOV Bypass Lane at Metered Freeway Entrance Ramp ... 3-27
Figure 3-17 Example of Layout for Separate HOV Ramp on Metered Freeway ... 3-27
Figure 3-18 Examples of Cross Sections of Enforcement Areas Along a Reversible Barrier-Separated HOV Lane ... 3-31
Figure 3-19 Examples of Cross Sections of Enforcement Areas Along Concurrent Flow and Exclusive Buffer-Separated HOV Lanes 3-32
Figure 3-20 Examples of Directional and Bi-Directional Enforcement Area Layouts ... 3-33
Figure 3-21 Examples of Regulatory Signs Used with HOV Facilities 3-35
Figure 3-22 Examples of HOV Lane Pavement Markings 3-37
Figure 3-23 Diamond Symbol Pavement Marking .. 3-38
Table of Contents

Figure 3-24 Bus Turnouts .. 3-40
Figure 3-25 Typical Pedestrian Overpasses on Major Highways 3-45
Figure 3-26 Example High-Speed Freeway On-Line Stations 3-47
Figure 3-27 Examples of Cross Sections for On-Line Transit Stations 3-49
Figure 3-28 Example of Layouts for Center Platform and Side Platform for On-Line Transit Stations .. 3-50
Figure 3-29 HOV Direct Access Ramp Serving Bus Transfers at an Intersection 3-51
Figure 3-30 Example Right-Side Bus Stops .. 3-53
Figure 3-31 Bus Stops at Freeway Level .. 3-54
Figure 3-32 Bus Stops at Freeway Level – Diamond Interchange 3-55
Figure 3-33 Freeway Level - Bus Stop at Cloverleaf Interchange 3-56
Figure 3-34 Example Busway Stations .. 3-57
Figure 3-35 Typical Busway On-line Station Layout 3-57
Figure 3-36 Freeway Interchange Bus Interface Type I 3-59
Figure 3-37 Freeway Interchange Bus Interface Type II 3-60
Figure 3-38 Freeway Interchange Bus Interface Type III 3-61
Figure 3-39 Interface of Freeway and Local Bus Services at “Parclo A” Interchanges (Type I & II) .. 3-62
Figure 3-40 Interface of Freeway and Local Bus Services at “Parcio A” Interchanges (Type III) .. 3-63
Figure 3-41 Bus Stops at Street Level on Diamond Interchange 3-64

Figure 4-1 Photo Of Typical Suburban Arterial With Bus Lane And Bus Bay 4-7
Figure 4-2 Photo Of Typical CBD Street With Bus Lane And Bus Stop 4-7
Figure 4-3 Photo Of Bus And Bus Stop In A Congested, Busy Mixed-Traffic Environment .. 4-8
Figure 4-4 Advance Signal And Stop Bar For Bus Left Turns From Right Lane Bus Stop .. 4-17
Figure 4-5 Shoulder Bus Lane (US 29, Maryland) ... 4-20
Figure 4-6 Line Diagram Of A Shoulder Lane Approaching A Signalized Intersection With A Right Turn Lane .. 4-21
Figure 4-7 Right Curb Bus (HOV) Lane, Toronto .. 4-21
Figure 4-8 Stopped Vehicle Obstructing Bus Lane, Toronto 4-21
Figure 4-9 Bus Lane in Second Lane, Ottawa .. 4-24
Figure 4-10 Dual Bus Lane (New York City) .. 4-24
Figure 4-11 Line Diagram Of Three Different Mid-Block Bus Stops For Second Lane Bus Lanes .. 4-25
Figure 4-12 Median Concurrent Flow (Left Side) Bus Lane (Paris) 4-26
Figure 4-13 Line Diagram Of In-Street Island and Center Island Bus Stops For Left Side Bus Lanes .. 4-27
Figure 4-14 Right Side Bus Lane On One-Way Street, Honolulu 4-28
Figure 4-15 Signage And Pavement Markings For “Contraflow” Bus Lane On One Way Street, Los Angeles .. 4-29
Figure 4-16 Median Contraflow Bus Lane Island Stop (Blvd Pie IX, Montreal) 4-29
Figure 4-17 Median Contraflow HOV Lane, Honolulu 4-30
Figure 4-18 Bus-Only Link (Brisbane, Australia) .. 4-31
Figure 4-19 Line Diagram Of Examples Of Bus-Only Turn Lanes 4-32
Table of Contents

- Figure 4-20 Overhead Bus Lane Penalty Sign (English/French), Ottawa, Canada
- Figure 4-21 Curbside Preferential Lane Signs
- Figure 4-22 Overhead Preferential Lane Signs
- Figure 4-23 Intersection Lane Control Signs
- Figure 4-24 Typical Lane Word Marking Layout
- Figure 4-25 Bus Lane “Patch”, Gold Coast, Australia
- Figure 4-26 Typical Markings for Preferential Lanes
- Figure 4-27 Typical Markings for Preferential Lanes (Continued)
- Figure 4-28 Red Curb Line For Bus Lane, New York

- Figure 5-1 Park-and-Ride Site-Level Study Process
- Figure 5-2 Bus Loading Area (Berth) Designs
- Figure 5-3 Bus Loading Area (Berth) Examples
- Figure 5-4 Cross Section of Bus Loading Zone
- Figure 5-5 Rain Protection
- Figure 5-6 Saw-Toothed Bus Bay Design
- Figure 5-7 Saw-Toothed Bus Bay Application
- Figure 5-8 Linear Loading Area Dimensions
- Figure 5-9 Linear Bus Bay Application
- Figure 5-10 Bus Loop Design
- Figure 5-11 Bus Loop Application
- Figure 5-12 Para-transit Loading
- Figure 5-13 Waiting Area Components Associated with Bus Loading Area
- Figure 5-14 Amenity Core Placement Options
- Figure 5-15 Driver’s Break Room
- Figure 5-16 Supervisor’s Office / Security Office
- Figure 5-17 Customer Service Booth
- Figure 5-18 Emergency Phone
- Figure 5-19 Emergency / Panic Button
- Figure 5-20 Prototype Park-and-Ride Facilities
- Figure 5-21 Wheelchair Loading / Lift Requirements
- Figure 5-22 Passenger Facility Location
- Figure 5-23 Bicycle Accommodation
- Figure 5-24 Preferred Parking Stall Layout
- Figure 5-25 Angled Versus 90 Degree Parking
- Figure 5-26 Example Stall Layout – Handicapped Parking
List of Tables

Table 2-1 Typical Bus Passenger Boarding and Alighting Service Times
 for Selected Bus Types and Door Configurations...2-14
Table 2-2 Estimated Bus Capacity of On-Line Single Linear Bus Stop2-14
Table 2-3 Values of Percent Failure Associated with Za2-15
Table 2-4 Average Bus Re-Entry Delay into Adjacent Traffic Stream....................2-17
Table 2-5 Estimated Maximum Capacity of Loading Areas (Buses/h).......................2-18
Table 2-6 Efficiency of Multiple Linear Loading Areas at Bus Stops (Buses/h)2-19
Table 2-7 Estimated Maximum Capacity of On-Line Linear Bus (bus/h).................2-21
Table 2-8 Illustrative CBD Busway Capacities...2-22
Table 2-9 Estimated Average Speeds of Buses
 Operating in Freeway HOV Lanes ..2-24
Table 2-10 Examples of Typical Design Speeds for HOV Facilities2-36

Table 3-1 Examples of Design Elements for
 Operating Freeway Concurrent Flow HOV Facilities3-14
Table 3-2 Examples of Design Elements for Operating Contraflow HOV Lanes3-17
Table 3-3 Enforcement Attributes Associated
 with Different Types of HOV Facilities...3-28
Table 3-4 Comparison of Trade-Offs between Platform Locations3-52

Table 4-1 Arterial Street Characteristics ...4-3
Table 4-2 Comparative Analysis of Bus Stop Locations ..4-10
Table 4-3 Bus Bay Dimensions ...4-11
Table 4-4 Recommended Corner Radii ...4-15
Table 4-5 Preferential Lane Longitudinal Markings ..4-36
Table 5-1 Walking Distance Under Normal Conditions5-34
Table 5-2 Recommended Design Criteria for Turn Radii by Speed5-39
Table 5-3 Compound Curve Radii Recommended for Turns at Intersections5-40
Table 5-4 Compound Curve Radii Recommended for Turns at Intersections5-40
Table 5-5 Accessibility Standards ...5-44